WIND POWER FORECAST ERROR STATISTICS IN SPANISH POWER SYSTEM

S. Martín Martínez¹, A. Honrubia Escribano¹, M. Cañas Carretón¹, E. Gómez Lázaro¹ and V. Guerrero Mestre²

¹Renewable Energy Research Institute (www.ier.uclm.es) Universidad de Castilla-La Mancha

²Escuela de Ingenieros Industriales de Ciudad Real (www3.uclm.es/etsii-cr)
Universidad de Castilla-La Mancha

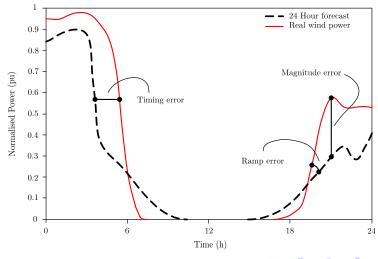
- Introduction
 - Motivation
 - Aim
- 2 WPFE sources
- Comparison and results
- 4 Conclusions

Motivation

Background

Taking into account the penetration of renewable energy in the Spanish power system, some considerations have been taken into account, e.g.:

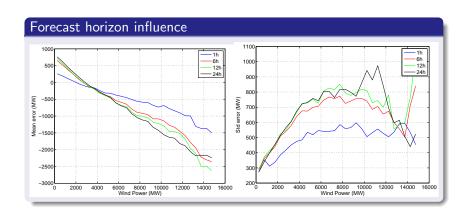
- Wind forecasting is an important consideration in integrating large amounts of wind power into the electricity grid.
- The Wind Power Forecast Error (WPFE) distribution assumed can have a large impact on the confidence intervals produced in wind power forecasting.

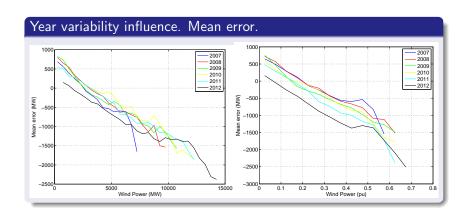

Aim

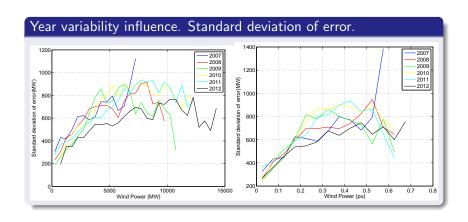
Aim of this work

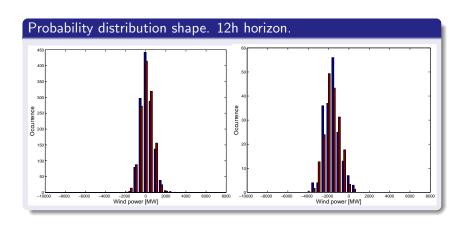
- Describe error sources and magnitudes to establish their main characteristics.
- Examine WPFE statistics for Spanish power system over multiple timescales.
- Compare WPFE experimental distribution shape and normal distribution shape.

- Introduction
 - Motivation
 - Aim
- 2 WPFE sources
- Comparison and results
- 4 Conclusions


WPFE sources I




WPFE sources II


- A timing error is defined as an event that it is accurately predicted in magnitude, but occurs at the wrong time. This kind of error can achieve a considerable absolute error even when event magnitude has been correctly forecasted.
- A magnitude error is defined as an event that is forecast approximately at the right time, but with the wrong magnitude.
 This can occur in two possible ways; the forecast might be in error about the rate of change or might be in error regarding the overall magnitude of the event.
- A ramp error consists on a ramp event that is forecasted with a different rate of change. This kind of error drives forecast to considerable magnitude errors.

- Introduction
 - Motivation
 - Aim
- 2 WPFE sources
- 3 Comparison and results
- 4 Conclusions

- Introduction
 - Motivation
 - Aim
- 2 WPFE sources
- Comparison and results
- 4 Conclusions

Conclusions

- WPFE sources have been identified and characterized for Spanish wind power. WPFE have been analyzed depending on wind power generation range.
- A statistical analysis was performed for FE, obtaining its trend, seasonal variability and residual variability. A great amount of wind power and forecast data have been used for this analysis.
- Important results have been found by analyzing the relationships of mean and standard deviation of measured forecast error depending on wind power level.
- These relationships could be used to establish a model in order to calculate power system reserves to face wind power FE. Additionally, kurtosis and skewness parameter should be studied to fit distribution probability.

Acknowledgement

This work has been supported by the Junta de Comunidades de Castilla La Mancha —PEII10-0171-1803— and "Ministerio de Economía y Competitividad" —ENE2012-34603—, both projects co-financed with European Union FEDER funds.


WIND POWER FORECAST ERROR STATISTICS IN SPANISH POWER SYSTEM

S. Martín Martínez¹, A. Honrubia Escribano¹, M. Cañas Carretón¹, E. Gómez Lázaro¹ and V. Guerrero Mestre²

¹Renewable Energy Research Institute (www.ier.uclm.es)
Universidad de Castilla-La Mancha

²Escuela de Ingenieros Industriales de Ciudad Real (www3.uclm.es/etsii-cr)
Universidad de Castilla-La Mancha

